
Sublinear Algorithms for Optimization and Machine Learning

Alexander Irpan
alexirpan@berkeley.edu

Ronald Kwan
rkwan@berkeley.edu

May 11, 2015

Contents

1 Introduction 1

2 Preliminaries and the Perceptron 2
2.1 The Linear Classification Problem . 2
2.2 Algorithm: Sublinear Perceptron . 3
2.3 Technical Lemmas . 3
2.4 Main Theorem . 8

3 Generic Primal-Dual Algorithm 10

4 Approximating Semidefinite Programs 11
4.1 Problem . 11
4.2 Algorithm: Sublinear SDP . 12
4.3 Analysis . 12

5 Training Support Vector Machines (SVMs) 15
5.1 Problem . 15
5.2 Algorithm: SVM-SIMBA . 16
5.3 Analysis . 16
5.4 Performance Comparison . 17

6 Conclusion 18

1 Introduction

Recently, there has been a surge of interest in machine learning algorithms. These have broad
applications in industry, from spam detection to image recognition and natural language processing.
This interest is fueled by the trend of big data. Statistical theory indicates that the increase in
dataset sizes and processing power leads to greater and greater accuracy and capabilities.

However, improving results in this manner comes at a cost: as datasets grow in size, the time
it takes for learning algorithms to run increases as well. With datasets that range in the size of
terabytes, algorithms that run in linear or log-linear time can still take days of computation time.
Luckily, the study of sublinear algorithms has also become a burgeoning field with the advent of the
ability to collect and store these large data sets.

1

mailto:alexirpan@berkeley.edu
mailto:rkwan@berkeley.edu

In the past few years, there have been several works discussing the use of sublinear algorithms to
solve problems relevant to machine learning. In particular, the work of Elad Hazan and his collab-
orators have produced a sublinear approach that can be applied to several optimization problems
that arise in machine learning.

In this survey, we explore the work of Hazan et al., starting with the original paper [1] in which
they introduce the sublinear approach used throughout the three papers, first through the linear
perceptron (Section 2), then by presenting a general primal-dual algorithm (Section 3). We then
move on to the later works, where this approach is applied to the problems of solving SDPs [5]
(Section 4) and training SVMs [4] (Section 5).

2 Preliminaries and the Perceptron

In Hazan et al’s initial paper [1], the authors begin by describing a sublinear approach to classification
by solving the perceptron learning problem. They then apply the intuition and methods to different
and more general settings. Following their lead, we too begin by describing classification and their
perceptron algorithm.

2.1 The Linear Classification Problem

In the linear classification problem, the learner is given a set of n labeled examples, where each is a
d-dimensional vector. These form an n× d matrix A, where the ith row Ai is the ith example. The
labels comprise a vector y ∈ {+1,−1}n.

The goal is to find a separating hyperplane (represented by a normal vector x) such that for all
i, y(i) ·Aix ≥ 0. Assume x is in the unit Euclidean ball B.

We will assume throughout that Ai ∈ B for all i ∈ [n], where [m] denotes the set of integers
{1, 2, . . . ,m}. Any linear classification can be reduced to this by appropriate scaling.

We also assume that the labels y(i) are all 1, by taking Ai ← −Ai for any i with y(i) = −1. The
max-min formulation of the perceptron is finding the optimal x for

max
x∈B

min
i
Aix

Let the optimum be σ. A separating hyperplane exists iff σ ≥ 0 while x 6= 0. This optimum σ is
called the margin. Assuming there exists a separating hyperplane, any optimal solution has ‖x‖ = 1,
since scaling x up increases the value if it is non-negative.

For an ε-approximate solution the goal is to find a vector xε ∈ B such that

∀i′ Ai′xε ≥ max
x∈B

min
i
Aix− ε = σ − ε (1)

Relax miniAix to minp∈∆ p>Ax, where ∆ ⊂ Rn is the unit simplex {p ∈ Rn | pi ≥ 0,
∑
i pi = 1}.

The optimal strategy is to put all weight on the minimal Ai, so the optimum is still σ. Thus we can
regard the optimum as the outcome of a game to determine p>Ax, between a minimizer choosing
p ∈ ∆, and a maximizer choosing x ∈ B, yielding

σ ≡ max
x∈B

min
p∈∆

p>Ax,

From standard duality results, σ is also the optimum of the dual problem

min
p∈∆

max
x∈B

p>Ax,

and the optimum vectors p∗ and x∗ are the same for both problems.
This formulation changes the discrete optimization over i ∈ [n] to a continuous optimization over

p ∈ ∆, which makes it much easier to find an approximate solution.

2

2.2 Algorithm: Sublinear Perceptron

The classical Perceptron Algorithm returns an ε-approximate solution to the linear classification
problem in 1

ε2 iterations, and total time O(ε−2M). In contrast, the paper’s version of the perceptron
algorithm takes O(ε−2(n + d)(log n)) time to return an ε-approximate solution with probability at
least 1

2 . This is optimal in the unit-cost RAM model up to polylog factors, but we will not prove
this. See section 6 of [1] for the lower bound proofs.

Algorithm 1 Sublinear Perceptron

1: Input: ε > 0, A ∈ Rn×d with Ai ∈ B for i ∈ [n].

2: Let T ← 2002ε−2 log n, y1 ← 0, w1 ← 1n, η ←
√

logn
T .

3: for t = 1 to T do
4: pt ← wt

‖wt‖1 , xt ← yt
max{1,‖yt‖} .

5: Choose it ∈ [n] by it ← i with prob. pt(i).
6: yt+1 ← yt + 1√

2T
Ait

7: Choose jt ∈ [d] by jt ← j with probability xt(j)
2/‖xt‖2.

8: for i ∈ [n] do
9: ṽt(i)← Ai(jt)‖xt‖2/xt(jt)

10: vt(i)← clip(ṽt(i), 1/η)
11: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)

2)
12: end for
13: end for
14: return x̄ = 1

T

∑
t xt

The sublinear perceptron algorithm is presented in Figure 1. We explain the approach of the
algorithm in more depth before proceeding.

To solve maxx∈B minp∈∆ p>Ax, the algorithm does gradient descent. Each iteration, we update
by computing the gradient with respect to x, then with respect to p. These are p>A and Ax
respectively. The first is used to update the current best hyperplane y. The second is used to
update a weight vector w with a multiplicative weight update. In the psuedocode, lines 5-6 update
y with the sampled gradient w.r.t. x, using randomized online gradient descent (OGD), and lines
7-12 update w with the sampled gradient w.r.t. p, using a version of multiplicative weights (MW).
Given enough iterations, the normalized versions of both p>A and Ax converge to solutions x, p,
and the bulk of the following is proving bounds on the convergence rate.

2.3 Technical Lemmas

Before the main result, which gives the performance of this algorithm, we present several supporting
technical results.

To get sublinear performance, instead of evaluating the aforementioned dot products in full,
we can define random variables whose expected values are the dot products. Note that by the
formulation maxx∈ball minp∈∆ p>Ax, all dot products we need to estimate are in one of two forms.

1. p>v, where p satisfies
∑
i p(i) = 1.

2. u>x, where x satisfies
∑
i x(i)2 = 1.

For the first form, we can define a random variable V where Pr(V = v(i)) = p(i). A simple
calculation gives E[V] = p>v. For the second form, define U as Pr(U = u(i)/x(i)) = x(i)2. These
are called the `1-sample and `2-sample.

The `2-sample can be problematic because u(i)/x(i) could be very large if x(i) is small. To deal
with especially large values, the samples are clipped. Given sampled value s, clip(s, a) gives −a if

3

s < −a, s if −a ≤ s ≤ a, and a if s > a. This clipping biases the estimator, but it can be shown the
effect is negligible.

Lemma 2.1. Let X be a random variable such that |E[X]| ≤ C/2. Let X̄ = clip(X,C). Then

|E[X]−E[X̄]| ≤ 2V ar(X)

C

Proof. For x > C, x−E[X] ≥ C/2, so

C(x− C) ≤ 2(x−E[X])(x− C) ≤ 2(x−E[X])2

Then find the difference by direct evaluation:

E[X]−E[X̄] =

∫
x<−C

(x+ C) dµX +

∫
x>C

(x− C) dµX

≤
∫
x>C

(x− C) dµX

≤ 2

C

∫
x<−C

(x−E[X])2 dµX

≤ 2

C
Var[X]

Similarly, one can show E[X̄]−E[X] ≥ − 2
C Var[X], completing the proof.

Later, we show Var[X] is small enough to make the bias negligible.
The multiplicative weight update used is different from the one given in class. In the following,

let qt represent the vector of estimates, where qt(i) is an estimate of Aix.

Definition 1 (Variance MW Algorithm). Let q1, q2, · · · qT be a sequence of vectors in Rn. Initialize

weights w to the all-one vector, and set a learning parameter η =
√

logn
T . For each t ∈ [T], set

pt = wt/‖wt‖1, wt+1(i) = wt(i)(1− ηqt(i) + η2qt(i)
2)

Lemma 2.2 (Variance MW Lemma). The MW algorithm satisfies∑
t∈[T]

p>t qt ≤ min
i∈[n]

∑
t∈[T]

max{qt(i),−1/η}+
log n

η
+ η

∑
t∈[T]

p>t q
2
t .

where q2
t is the vector such that q2

t (i) = (qt(i))
2.

Proof of Lemma 2.2, Weak Regret. The proof is similar to the proof from class. We first show an
upper bound on log‖wT+1‖1, then a lower bound, and then relate the two.

From the weight update and pt = wt/‖wt‖1,

‖wt+1‖1 =
∑
i∈[n]

wt+1(i)

=
∑
i∈[n]

pt(i)‖wt‖1(1− ηqt(i) + η2qt(i)
2)

= ‖wt‖1(1− ηp>t qt + η2p>t q
2
t).

Since ‖w1‖1 = n, we can use 1 + z ≤ exp(z)∀z ∈ R and induction on t to get

log‖wT+1‖1 = log n+
∑
t∈[T]

log(1− ηp>t qt + η2p>t q
2
t) ≤ log n−

∑
t∈[T]

ηp>t qt + η2p>t q
2
t . (2)

4

Now for the lower bound. From the weight update and induction on t,

wT+1(i) =
∏
t∈[T]

(1− ηqt(i) + η2qt(i)
2)

log‖wT+1‖1 = log

∑
i∈[n]

∏
t∈[T]

(1− ηqt(i) + η2qt(i)
2)


≥ log

max
i∈[n]

∏
t∈[T]

(1− ηqt(i) + η2qt(i)
2)


= max

i∈[n]

∑
t∈[T]

log(1− ηqt(i) + η2qt(i)
2)

≥ max
i∈[n]

∑
t∈[T]

[min{−ηqt(i), 1}],

where we use the fact that 1 + z+ z2 ≥ exp(min{z, 1}) for all z ∈ R. Putting this together with the
upper bound (2),

max
i∈[n]

∑
t∈[T]

[min{−ηqt(i), 1}] ≤ log n−
∑
t∈[T]

ηp>t qt + η2p>t q
2
t

∑
t∈[T]

ηp>t qt ≤ −

max
i∈[n]

∑
t∈[T]

[min{−ηqt(i), 1}]

+ log n+ η2p>t q
2
t ,

= min
i∈[n]

∑
t∈[T]

[max{ηqt(i),−1}] + log n+ η2p>t q
2
t ,

and the lemma follows, dividing through by η.

Next, we introduce a general purpose concentration inequality. The Bernstein inequality states
that, for random variables Zt : t ∈ [T], where each is independent and E[Zt] = 0, E[Z2

t] ≤ s, |Zt| ≤ V ,

Prob

∑
t∈[T]

Zt ≥ α

 ≤ exp

(
− α2

2(Ts+ αV/3)

)
This can be proved in a similar way to the Chernoff bound.

For this setting, we want to bound how much vt(i) deviate from the mean, but the random
variables vt are not independent. However, they are a martingale under a certain filtration, and
this weaker condition is good enough to prove Bernstein’s inequality. The following extension to
Bernstein’s inequality is stated without proof; see Lemma B.3 from [1] for the explicit details.

Lemma 2.3. Let {Zt} be a martingale difference sequence with respect to filtration {St}, such that
E[Zt|S1, ..., St] = 0. Assume the filtration {St} is such that the values in St are determined using
only those in St−1, and not any previous history, meaning the joint probability distribution is

Prob {S1 = s1, S2 = s2, . . . , ST = st} =
∏

t∈[T−1]

Prob {St+1 = st+1 | St = st} ,

In addition, assume for all t, E[Z2
t |S1, ..., St] ≤ s, and |Zt| ≤ V . Then

Prob

{∑
t∈T

Zt ≥ α

}
≤ exp

(
− α2

2(Ts+ αV/3)

)

5

With this lemma in hand, we can now bound the error between the entries of vt (generated by
only sampling 1 entry of the vector) and the true value of the entry Aixt.

Lemma 2.4. For η ≥
√

logn
T , with probability at least 1−O(1/n),

max
i

∑
t∈[T]

[vt(i)−Aixt] ≤ 4ηT.

Proof. Let v̄t(i) be the unclipped vt(i). Recall that as defined, E[v̄t(i)] = Aixt, and more importantly
E[vt(i)] 6= Aixt because vt(i) is biased from the clipping.

We assume the expectation’s absolute value is bounded above by 1
η .

First, bound the variance of the unclipped v̄t(i). Recall that Ai is from the unit ball and each
xt is inside the unit ball, so

V ar(v̄t(i)) ≤ E[v̄t(i)
2] ≤ ‖Ai‖2‖xt‖2 ≤ 1

By the clipping lemma, |E[vt(i)]−Aixt| ≤ 2η.
To prove the lemma, we show that for all i,

∑
t∈[T][vt(i) − E[vt(i)]] ≤ 4ηT with probability

1−O(1
n2). By triangle inequality and union bound, this would prove the desired result.

For a fixed i, let Zit ≡ vt(i) − E[vt(i)] = vt(i) − Aixt. This has expectation 0. Consider the
filtration given by

St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, vt−1 −E[vt−1]),

Denote Et[·] = E[·|St]. Observe that

1. ∀t . Et[(Z
i
t)

2] = V ar(vt(i)) ≤ Var(v̄t(i)) ≤ 1 (follows from expectation abs value bounded
above by 1/η, so clipping must reduce the variance.)

2. |Zit | ≤ 2/η. This holds since by clipping, |vt(i)| ≤ 1/η, and hence

|Zit | = |vt(i)− E[vt(i)]| ≤ |vt(i)|+ |E[vt(i)]| ≤
2

η

These conditions are strict enough to use the extended Bernstein inequality, with s = 1 and
V = 2/η. This gives

Prob

∑
t∈[T]

Zt ≥ 4ηT

 ≤ exp

(
− 16η2T 2

2(T + 8T
3)

)

≤ exp

(
−48

22
η2T

)
≤ exp(−2η2T)

and for η ≥
√

logn
T this is ≤ 1

n2 .

For the following proofs, µt(i) = Aixt represents the expectation of the unclipped estimator v̄t.

Lemma 2.5. For η ≥
√

logn
T , with probability at least 1−O(1/n), it holds that∣∣∣∣∣∣

∑
t∈[T]

µt(it)−
∑
t

p>t vt

∣∣∣∣∣∣ ≤ 10ηT

6

The motivation here is Ait is the row selected on iteration t. We want a way to bound the regret
over the distribution given by multiplicative weights.

Proof. Prove this by proving 2 other inequalities. For the same η w.p. 1−O(1/n),∣∣∣∣∣∣
∑
t∈[T]

p>t vt −
∑
t

p>t µt

∣∣∣∣∣∣ ≤ 4ηT.

∣∣∣∣∣∣
∑
t∈[T]

µt(it)−
∑
t

ptµt

∣∣∣∣∣∣ ≤ 6κηT.

where κ is some constant such that |µt(i)| ≤ κ. For the perceptron algorithm, κ = 1. Combining
with triangle inequality gives the lemma.

The proof for the first one is essentially the same as the previous lemma. Lemma 2.1 implies
that |E[vt(i)]−µt(i)| ≤ 2η as shown in the previous proof. Since pt is a distribution, it follows that
|E[p>t vt]− p>t µt| ≤ 2η

Let Zt ≡ p>t vt −E[p>t vt] =
∑
i pt(i)Z

i
t , where Zit = vt(i)−E[vt(i)]. Consider the filtration given

by
St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, vt−1 −E[vt−1]),

Using the notation Et[·] = E[·|St], the quantities |Zt| and Et[Z
2
t] can be bounded as follows:

|Zt| =

∣∣∣∣∣∑
i

pt(i)Z
i
t

∣∣∣∣∣ ≤∑
i

pt(i)|Zit | ≤ 2η−1 using |Zit | ≤ 2η−1 as shown in Lemma 2.4.

By properties of variance, we have

E[Z2
t] = V ar[p>t vt] =

∑
i

pt(i)
2V ar(vt(i)) ≤ max

i
V ar[vt(i)] ≤ 1.

Apply Bernstein’s inequality to get the same result.
The proof of the second also follows from Bernstein’s. Let Zt ≡ E[vt(it)] − ptµt, where now µt

is a constant vector and it is the random variable, and consider the filtration given by

St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, Zt−1),

The expectation of µt(it), conditioning on St with respect to the random choice r(it), is ptµt. Hence
Et[Zt] = 0, where Et[·] denotes E[·|St]. The parameters |Zt| and E[Z2

t] can be bounded as follows:

|Zt| ≤ |µt(i)|+ |ptµt| ≤ 2κ

E[Z2
t] = E[(µt(i)− p>t µt)2] ≤ 2 E[µt(i)

2] + 2(p>t µt)
2 ≤ 4κ2

Applying Lemma 2.3 to Z ≡
∑
t∈T Zt, with s = 4κ2 V ≤ 2κ, we obtain

Prob

∑
t∈[T]

Zt ≥ α

 ≤ exp

(
− α2

4κ2T + 2κα

)
,

7

With α = 6κηT , and assuming 1 > η ≥
√

logn
T , we obtain

Prob

∑
t∈[T]

Zt ≥ 6κηT

 ≤ exp

(
− 36η2κ2T 2

4κ2T + 12κ2ηT

)

≤ exp

(
−36η2κ2T 2

17κ2T

)
≤ exp(−2η2T) ≤ 1

n2

Combining both results completes the proof.

Lemma 2.6. With probability at least 1− 1
4 , it holds that

∑
t p
>
t v

2
t ≤ 8κ2T.

Proof. Again let v̄t(i) be the unclipped vt(i).

E[v̄t
2(i)] = Var(v̄t(i)) + E[v̄t(i)]

2 ≤ 1 + κ2 ≤ 2κ2

under the assumption κ ≥ 1. Clipping can only reduce the second moment, so E[v2
t (i)] ≤ E[v̄t

2(i)] ≤
2κ2. Since pt is a distribution, by linearity of expectation E[

∑
t∈[T] p

>
t v

2
t] ≤ 2κ2T . Since v2

t ≥ 0,

Markov’s inequality gives E[
∑
t∈[T] p

>
t v

2
t] ≥ 8κ2T w.p. 1

4 .

Lemma 2.7 (Lazy Projection OGD). Consider a set of vectors q1, . . . , qT ∈ Rd such that ‖qi‖2 ≤ 1.
Let

xt+1 ← arg min
x∈B

{
t∑

τ=1

q>τ · x+
√

2T‖x‖22

}
Then

max
x∈B

T∑
t=1

q>t x ≤
T∑
t=1

q>t xt + 2
√

2T

This is true even if each qt is dependent on x1, . . . , xt−1.

The final algorithm returns the average solution xt over all iterations. Each xt is a projection of
yt to the unit ball.

See Theorem 2.1 in [3] for the proof. Notice that the solution of the above optimization problem
is simply:

xt+1 =
yt+1

max{1, ‖yt+1‖}
, yt+1 =

−
∑t
τ=1 qτ√
2T

2.4 Main Theorem

Theorem 2.8 (Perceptron). With probability 1/2, the sublinear perceptron returns a solution x̄ that
is an ε-approximation.

Proof. First we use the regret bounds for lazy gradient descent to lower bound
∑
t∈[T]Aitxt, next

we get an upper bound for that quantity using the Weak Regret lemma above, and then we combine
the two.

By definition, Aix
∗ ≥ σ for all i ∈ [n], and so, using the bound of Lemma 2.7,

Tσ ≤ max
x∈B

∑
t∈[T]

Aitx ≤
∑
t∈[T]

Aitxt + 2
√

2T , (3)

8

or rearranging, ∑
t∈[T]

Aitxt ≥ Tσ − 2
√

2T . (4)

Now we turn to the MW part of our algorithm. By the Weak Regret Lemma 2.2, and using the
clipping of vt(i), ∑

t∈[T]

p>t vt ≤ min
i∈[n]

∑
t∈[T]

vt(i) + (log n)/η + η
∑
t∈[T]

p>t v
2
t .

By Lemma 2.4 above, with high probability, for any i ∈ [n],∑
t∈[T]

Aixt ≥
∑
t∈[T]

vt(i)− 4ηT,

so that with high probability∑
t∈[T]

p>t vt ≤ min
i∈[n]

∑
t∈[T]

Aixt +
log n

/η
+ η

∑
t∈[T]

p>t v
2
t + 4ηT

Combining (4) and (2.4) we get

min
i∈[n]

∑
t∈[T]

Aixt ≥ −
log n

η
− η

∑
t∈[T]

p>t v
2
t − 4ηT

+ Tσ − 2
√

2T −

∣∣∣∣∣∣
∑
t∈[T]

p>t vt −
∑
t∈[T]

Aitxt

∣∣∣∣∣∣
By Lemmas 2.5, 2.6 we have w.p at least 3

4 −O(1
n) ≥ 1

2

min
i∈[n]

∑
t∈[T]

Aixt ≥ −
log n

η
− 8ηT − 4ηT + Tσ − 2

√
2T − 10ηT

≥ Tσ − log n

η
− 22ηT.

Dividing through by T , and using our choice of η =
√

logn
T = ε

200 gives

min
i∈[n]

Ai

∑
t∈[T]

xt/T

 ≥ σ − log n

2002ε−2 log n ε
200

− 22
ε

200
.

= σ − ε

200
− 22

ε

200
≥ σ − ε

2

So miniAix̄ ≥ σ − ε/2 w.p. at least 1/2 as claimed.

It seems like the constant for T can be made much smaller, something like T = 302ε−2 log n
should work. In any case, we need at least O((log n)ε−2) iterations.

For run time, sampling and updating y, w each iteration takes Õ(n+ d) time, and it overall runs
in sublinear Õ(ε−2(n+ d)).

9

3 Generic Primal-Dual Algorithm

Hazan et al. [1] follow their analysis of the perceptron algorithm by applying similar methods to
related problems, including Minimum Enclosing Ball (MEB) and the Kernelized Perceptron. We
focus on their derivation of a general primal-dual method in sublinear time for a subset of problems.

In this scenario, we have a constrained optimization problem for which low-regret algorithms
exist and low-variance sampling can be applied efficiently. Consider the problem

max
x∈K

min
i
ci(x) = σ

with optimum σ. Suppose that, for K and cost functions ci(x), there exists an iterative low-regret
algorithm (LRA) with regret R(T) = o(T). Let

Tε(LRA) = min{T : R(T)/T ≤ ε}

Also, suppose we have a procedure Sample(x, c) that returns an unbiased estimate of c(x) with
variance ≤ 1 and runs in constant time. Finally, assume that |ci(x)| ≤ 1 for all x ∈ K, i ∈ [n]. An
algorithm for solving this problem is given in Figure 2.

Algorithm 2 Generic Sublinear Primal-Dual Algorithm

1: Let T ← max
{
Tε(LRA), logn

ε2

}
, x1 ← LRA(initial), w1 ← 1n, η ← 1

100

√
logn
T .

2: for t = 1 to T do
3: for i ∈ [n] do
4: vt(i)← Sample(xt, ci)
5: vt(i)← clip(ṽt(i), 1/η)
6: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)

2)
7: end for
8: pt ← wt

‖wt‖1 ,

9: Choose it ∈ [n] by it ← i with probability pt(i).
10: xt ← LRA(xt−1, cit)
11: end for
12: return x̄ = 1

T

∑
t xt

The proof of the performance is very similar to that of the sublinear perceptron.

Theorem 3.1. Algorithm 2 returns, with probability at least 1
2 , an ε-approximate solution, in

max{Tε(LRA), log(n)/ε2} iterations.

Proof. We bound
∑
t∈[T] cit(xt) above and below and combine these bounds.

Since ci(x
∗) ≥ σ for all i ∈ [n], the LRA regret bound gives

Tσ ≤ max
x∈B

∑
t∈[T]

cit(x) ≤
∑
t∈[T]

cit(xt) +R(T)

∑
t∈[T]

cit(xt) ≥ Tσ −R(T)

For MW, we refer to Lemma 2.2, and since vt are clipped,∑
t∈[T]

p>t vt ≤ min
i∈[n]

∑
t∈[T]

vt(i) +
log(n)

η
+ η

∑
t∈[T]

p>t v
2
t

10

From Lemmas 2.4, 2.5, since Sample is unbiased with variance ≤ 1, with high probability

∀i ∈ [n] :
∑
t∈[T]

vt(i) ≤
∑
t∈[T]

ci(xt) +O(ηT)

∣∣∣∣∣∣
∑
t∈[T]

cit(xt)−
∑
t∈[T]

p>t vt

∣∣∣∣∣∣ = O(ηT)

It follows from the previous inequality that with high probability,

∑
t∈[T]

ci(xt) ≤ min
i∈[n]

∑
t∈[T]

ci(xt) +O

 log(n)

η
+ η

∑
t∈[T]

p>t v
2
t + ηT


Combining this upper bound with the lower bound, with high probability,

min
i∈[n]

∑
t∈[T]

ci(xt) ≥ −O

 log n

η
+ ηT + η

∑
t∈[T]

p>t v
2
t

−R(T)

And by Lemma 2.6, with probability at least 1
2 ,

min
i∈[n]

∑
t∈[T]

ci(xt) ≥ −O
(

log n

η
+ ηT

)
−R(T)

Dividing by T , mini cix̄ ≥ σ − ε/2, as desired.

4 Approximating Semidefinite Programs

4.1 Problem

Semidefinite programming (SDP) is a field growing in importance, with applications in combinatorial
optimization and machine learning. We investigate sublinear algorithms for solving general SDPs.
As with the previous sections, we assume the SDP is in memory and we can access an arbitrary
entry of the matrices in constant time (e.g. as if they were in an array.)

The SDP is assumed to be of the form

maximize C ◦X
subject to Ai ◦X ≥ 0, i = 1, . . . ,m

X � 0

Additionally, we require the Frobenius norm of the constraints
(
‖A‖ =

√∑
i,j A

2
ij

)
to be at most

1. This is analogous to requiring the examples from the perceptron to have norm at most 1. All
SDPs can be reduced to this form, and these assumptions are most convenient to proving the desired
bounds.

Instead of optimizing with respect to the constraints, we only try to find a feasible solution in
sublinear time. Given a feasibility algorithm, we can do binary search by adding a C ◦ X ≥ c
constraint to get an optimum.

11

4.2 Algorithm: Sublinear SDP

In the previous section, it was shown that there is a general purpose sublinear algorithm for problems
of the form

max
x

min
i
ci(x) = σ

with a low regret algorithm (LRA) that gives regret o(T) in T iterations. The paper reduces SDP
feasibility to this form and gives such an LRA.

The feasibility problem is written as the min-max formulation

max
X�0

min
i∈[m]

Ai ◦X

which has a non-negative optimum iff the SDP is feasible. Let the optimum be σ. An ε additive
approximation algorithm is an algorithm that returns a feasible X such that mini∈[m]Ai ◦X ≥ σ−ε.
Additionally, we restrict X to be from the bounded semidefinite cone K = {X : X � 0, T r(X) ≤ 1}.
If σ > 0, then allowing unbounded X can make Ai ◦X arbitrarily large. Again, a feasible solution
exists iff a feasible solution in K exists, so this loses no generality.

To create a low regret algorithm, we loosen the min-max problem to

max
x

min
p∈∆m

∑
i∈[m]

p(i)Ai ◦X

where ∆m is the unit simplex. This still has the same optimum, since the best solution sets p(i) = 1
at the best constraint.

Similarly to the perceptron, we treat the optimization problem as a game. One player maximizes
the objective over X by keeping p fixed. The other minimizes the objective over p by keeping X
fixed. Both do updates by gradient descent. Finding a sublinear regret implementation of both will
give sublinear performance.

The two players can be thought of as the primal player and the dual player. The primal maximizes
x by adding a vector in the direction of the gradient

∑
i p(i)Ai. To get sublinear performance, use

the `1 sample, which samples Ai with prob. p(i).
The dual player updates p with a MW algorithm, where weight w(i) is updated in direction of

gradient Ai ◦X. Again, to get sublinear performance, Ai ◦X is sampled by picking only a specific
entry of Ai based on X. This is done with the `2-sample, and the sample is clipped to deal with
extreme values. Since ‖Ai‖ ≤ 1, the variance of the unclipped estimator is at most 1.

We store a weight vector w ∈ Rm and a matrix Y that is the running sum of sampled constraints.
Like the perceptron, at each iteration we need to project the running total Y onto an X in the space
of valid solutions K. For the perceptron, we assume the valid solutions are in the unit ball, and the
projection is easy. In the SDP problem, projection onto the positive semidefinite cone K is much
harder. To do so, we use Hazan’s algorithm, which has the following guarantee, proved in [2].

Lemma 4.1. Given matrix Y ∈ Rn×n, ε > 0, let f(X) = −‖Y −X‖2, and X∗ = argmaxX∈K f(X).

Hazan’s algorithm returns a solution X̃ ∈ K of rank at most ε−1 such that f(X∗) − f(X̃) ≤ ε in

Õ
(
n2

ε1.5

)
time

The full algorithm is in Figure 3. 0n×n is the zero matrix, 1m is the all one vector.

4.3 Analysis

To analyze the performance, we first state the corresponding regret lemmas without proof.

12

Algorithm 3 Sublinear SDP

1: Input: ε > 0, Ai ∈ Rn×n for i ∈ [m].

2: Let Y1 ← 0n×n, w1 ← 1m, η ←
√

logm
T , εP = ε/2.

3: for t = 1 to T do
4: pt ← wt

‖wt‖1 , Xt ← ApproxProject(Yt, ε
2
P)

5: Choose it ∈ [m] by it ← i with prob. pt(i).
6: Yt+1 ← Yt + 1√

2T
Ait

7: Choose (jt, lt) ∈ [n]× [n] by (jt, lt)← (j, l) with probability Xt(j, l)
2/‖Xt‖2.

8: for i ∈ [m] do
9: ṽt(i)← Ai(jt, lt)‖Xt‖2/Xt(jt, lt)

10: vt(i)← clip(ṽt(i), 1/η)
11: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)

2)
12: end for
13: end for
14: return X̄ = 1

T

∑
tXt

Lemma 4.2. For 1/4 ≥ η ≥
√

logm
T , with probability at least 1−O(1/m),

max
i∈[m]

∑
t∈[T]

(vt(i)−Ai ◦Xt) ≤ 4ηT.

Lemma 4.3. For 1/4 ≥ η ≥
√

logm
T , with probability at least 1−O(1/m),∣∣∣∣∣∣
∑
t∈[T]

Ait ◦Xt −
∑
t∈[T]

pTt vt

∣∣∣∣∣∣ ≤ 10ηT.

Lemma 4.4. With probability at least 1− 1
4 ,
∑
t p
>
t v

2
t ≤ 8κ2T. For the SDP problem, κ = 1.

Lemma 4.5. Consider matrices A1, . . . , AT ∈ Rn×n such that ‖Ai‖ ≤ 1. Let X0 = 0n×n, Xt+1 ←
arg minX∈K‖ 1√

2T

∑t
τ=1Aτ −X‖ Then

max
x∈K

T∑
t=1

At ◦X −
T∑
t=1

At ◦Xt ≤ 2
√

2T .

All follow from the perception regret lemmas since Ai ◦Xt is no different from a dot product of
vectors in higher dimensional space. The performance result and proof of it are also similar to those
for the perceptron.

Theorem 4.6. Sublinear SDP (Algorithm 3) returns an ε-additive approximation with high proba-
bility.

Proof. Start with the OGD lemma. Consider the sequence of sampled matrices Ai1 , Ai2 , Ai3 , · · ·
and assume we compute the exact projection instead of the approximate one. Let X̃t be the exact
projection. By Lemma 4.5

max
X∈K

∑
t∈[T]

Ait ◦X −
∑
t∈[T]

Ait ◦ X̃t ≤ 2
√

2T

The guarantee from Hazan’s algorithm and some manipulation with law of cosines gives

‖Xt − X̃t‖2 = ‖(Yt −Xt)− (Yt − X̃t)‖2 ≤ ‖Yt −Xt‖2 − ‖Yt − X̃t‖2 ≤ ε2P

13

Rewriting the lemma bound to use Xt instead of X̃t and some manipulation gives

max
X∈K

∑
t∈[T]

Ait ◦X −
∑
t∈[T]

Ait ◦Xt ≤ 2
√

2T +
∑
t∈[T]

Ait ◦ (X̃t −Xt)

Recall ‖Ai‖ ≤ 1. By Cauchy-Schwarz, Ait ◦ (X̃t−Xt) ≤ ‖Ai‖‖X̃t−Xt‖ ≤ εP . Some rearrangement
and substitution of σ = maxX∈KminiAi ◦X gives∑

t∈[T]

Ait ◦Xt ≥ max
X∈K

∑
t∈[T]

Ait ◦X − 2
√

2T − TεP ≥ Tσ − 2
√

2T − TεP

We need to turn this bound on the sum over all iterations to a bound on the largest difference of
Ai ◦X from the optimal. For this, we use the variance MW regret bound (Lemma 2.2). Let qt be
the vt generated each iteration. Since each vt is clipped to 1/η, we have

∑
t∈[T]

p>t vt ≤ min
i∈[m]

∑
t∈[T]

vt(i)

+
logm

η
+ η

∑
t∈[T]

p>t v
2
t

By Lemma 4.2,
∑
t∈[T] v(i) ≤

∑
t∈[T]Ai ◦Xt + 4ηT w.h.p. for all i. So, w.h.p.

∑
t∈[T]

p>t vt ≤ min
i∈[m]

∑
t∈[T]

Ai ◦Xt

+ 4ηT +
logm

η
+ η

∑
t∈[T]

p>t v
2
t

Now, we massage this expression to let us use the bound on
∑
tAit ◦Xt.

min
i∈[m]

∑
t∈[T]

Ai ◦Xt ≥
∑
t∈[T]

p>t vt − 4ηT − logm

η
− η

∑
t∈[T]

p>t v
2
t

= −4ηT − logm

η
− η

∑
t∈[T]

p>t v
2
t +

∑
t∈[T]

Ait ◦Xt −

∑
t∈[T]

Ait ◦Xt −
∑
t∈[T]

p>t vt


≥ −4ηT − logm

η
− η

∑
t∈[T]

p>t v
2
t + Tσ − 2

√
2T − TεP −

∣∣∣∣∣∣
∑
t∈[T]

Ait ◦Xt −
∑
t∈[T]

p>t vt

∣∣∣∣∣∣
Lemma 4.3 lets us replace the last term with −10ηT , and Lemma 4.4 gives

∑
t∈[T] p

>
t v

2
t ≤ 8T w.p.

≥ 3/4.

min
i∈[m]

∑
t∈[T]

Ai ◦Xt ≥ Tσ − TεP − 22ηT − logm

η
− 2
√

2T

Dividing through by T , and substituting T = 602ε−2 logm, η =
√

logm
T = ε

60 , gives

min
i∈[m]

Ai ◦

(∑
t∈T

Xt/T

)
≥ σ − εP − 22η − logm

ηT
− 2
√

2√
T

= σ − ε

2
− 22ε

60
− ε

60
− 2

√
2ε

60
√

logm

≥ σ − ε

giving the desired approximation result.

14

For run time analysis, the algorithm runs forO(ε−2 logm) = Õ(ε−2) iterations. It takesO(m+n2)
time to sample it and (jt, lt), and it also takes O(m+ n2) time to update w and Yt. The runtime is

dominated by the projection step, and the overall run time is Õ
(
m
ε2 + n2

ε5

)
Similarly to the perceptron lower bound, any sublinear ε-approximation takes Ω

(
m
ε2 + n2

ε2

)
. The

gap between the algorithm’s runtime and the optimal runtime comes entirely from the projection

step. In fact, further work in this area has reduced the runtime to Õ
(
m
ε2 + n2

ε2.5

)
by avoiding this

projection. Instead, at each iteration we compute a Z ∈ K that is approximately orthogonal to the
current Xt, and use it to update running total Y . This can be shown to give the same asymptotic
performance, and computing this Z is faster than computing the projection. See [6] for details.

For further improvement, the main approach should find a more efficient way to update Yt and/or
generate Xt ∈ K from each Yt.

5 Training Support Vector Machines (SVMs)

5.1 Problem

Support Vector Machines (SVMs) are a widely used machine learning technique for classification
tasks. In order to solve the optimization problems used to train SVMs, it is common to use online
stochastic optimization approaches, such as stochastic gradient descent, that are optimal with regard
to generalization error with only using one pass over the data.

Despite the apparent optimality of existing methods, Hazan et al. [4] have shown that an even
better runtime can be achieved, albeit with a non-online approach. By making use of the sublinear
primal-dual method described above to read only a subset of the features of the training data,
allowing for fewer overall feature accesses, their algorithm, SVM-SIMBA, outperforms the existing
online approaches.

We formally describe the linear SVM binary classification problem, and massage it to work with
our previous approach. Let {xi, yi : i = 1, . . . n} be n labeled points, where xi ∈ Rd, and yi ∈ {±1}.
If needed, we normalize the xi such that ‖xi‖ ≤ 1. We define a predictor by a vector w ∈ Rd and a
bias b ∈ R.

The goal for training an SVM can be written as an optimization problem in which we want to
minimize the error of our predictor and the norm of w. The error is defined as the average hinge
loss, so that our problem is

min
w∈Rd,b∈R

‖w‖, R̂hinge(w, b) =
1

n

n∑
i=1

(1− y (〈w,xi〉+ b))+ (5)

This doesn’t play nice with our framework, so we use a parameterization of the Pareto optimal
points for this problem, introducing slack variables ξi and a parameter ν to write this as another
optimization problem.

max
w∈Rd,b∈R,ξi≥0

min
i∈[n]

yi (〈w,xi〉+ b) + ξi (6)

‖w‖ ≤ 1
n∑
i=1

ξi ≤ nν

We can obtain all the Pareto optimal solutions of (5) by solving (6) exactly and varying ν. If we
solve (6) approximately, we obtain a Pareto sub-optimal solution. The following lemma describes
this formally.

15

Lemma 5.1. For w 6= 0, b ∈ R, let ν = R̂hinge(w, b)/‖w‖. With this ν, let an ε-suboptimal solution

to (6) be w(ε), b(ε), ξ(ε), with value γ(ε). Consider a scaled solution w̃ = w(ε)/γ(ε), b̃ == b(ε)/γ(ε).
Then

‖w̃‖ ≤ 1

1− ε‖w‖
‖w‖

R̂hinge(w̃, b̃) ≤
1

1− ε‖w‖
R̂hinge(w, b)

Without affecting optimality, we can place some additional constraints on these problems: ‖w‖ ≥
1, 0 ≤ ν ≤ 1, and 0 ≤ ξi ≤ 2.

5.2 Algorithm: SVM-SIMBA

To introduce the sublinear approach to this problem, note that the primal-dual method described
in Section 3 can be applied to saddle-point problems of the form

max
z∈K

min
p∈∆n

n∑
i=1

pici(z)

The SVM problem can be formulated in terms of this structure. Let z = (w, b, ξ), and K =
Bd × R× Ξν , where Ξν = {ξ ∈ Rn : 0 ≤ ξi ≤ 2, ‖ξ‖1 ≤ nν}.

A straightforward application of the previous approach will work, but it yields a slow convergence
rate, since the regret grows very quickly. To combat this, a hybrid approach is proposed, using a
technique from the work of Plotkin, Shmoys, and Tardos (PST) [7]. In the PST primal-dual method,
z is updated by fixing p and solving the ”easy” problem

max
z∈K

∑
i∈[n]

pici(z)

This can be applied fruitfully to small-sized problems, and we use PST in the algorithm to update
ξ and b, giving an update cost of O(n) time for those terms.

The algorithm, called SIMBA (short for “Sublinear IMportance-sampling Bi-stochastic Algo-
rithm”), is a sublinear-time approximation algorithm for the modified SVM binary classification
problem (6). In the authors’ presentation, the bias term b is omitted for a smoother presentation,
and can easily be added back in with no consequence for the analysis. The labels yi are then made
redundant by setting xi ← −xi for i such that yi = −1.

5.3 Analysis

The analysis of this algorithm proceeds in a similar fashion to that of the previous algorithms, using
the variance MW algorithm and the convergence lemma described at the beginning. The proof is
sketched here, as in the paper.

Theorem 5.2. SVM-SIMBA returns an ε-approximate solution to (6) with probability at least 1/2.
It can be implemented to run in time Õ(ε−2(n+ d)).

Proof. Let the optimal solution to (6) be (w∗, b∗) with objective value γ∗. To relate the objective
value of our returned solution to γ∗, we bound the average objective value above and below.

The upper bound follows from the regret bound for the MW algorithm: with probability 3/4−
O(1/n),

1

T

∑
t∈[T]

p>t (Xwt + ξt) ≤
1

T
min
i∈[n]

∑
t∈[T]

(
x>i wt + ξt(i)

)
+O

(√
log(n)

T

)

16

Algorithm 4 SVM-SIMBA

1: Input: ε > 0, 0 ≤ ν ≤ 1, X ∈ Rn×d with xi ∈ Bd for i ∈ [n].

2: Let T ← 1002ε−2 log n, u1 ← 0, q1 ← 1n, η ←
√

log(n)
T

3: for t = 1 to T do
4: Choose it ← i with probability pt(i)
5: Let ut+1 ← ut + 1√

2T
xit , ξt ← arg maxξ∈Ξν

(
p>t ξ

)
6: wt ← ut

max{1,‖ut‖}
7: Choose jt ← j with probability wt(j)

2/‖wt‖2
8: for i = 1 to n do
9: ṽt(i)← xi(jt)‖wt‖2/wt(jt) + ξt(i)

10: vt(i)← clip(ṽt(i), 1/η)
11: qt+1(i)← qt(i)(1− ηvt(i) + η2vt(i)

2)
12: end for
13: pt ← qt

‖qt‖1
14: end for
15: return w̄ = 1

T

∑
t wt, ξ̄ = 1

T

∑
t ξt

The lower bound is a little more involved. The PST step gives us the bound
∑
t∈[T] p

>
t ξt ≥∑

t∈[T] p
>
t ξ
∗. Using a standard regret bound for the OGD update, we have, with probability at

least 1−O(1/n),

1

T

∑
t∈[T]

p>t (Xwt + ξt) ≥ γ∗ −O

(√
log(n)

T

)
Combining these bounds gives the following relation with probability at least 1/2, and using T =
1002ε−2 log n gives the desired result.

min
i∈[n]

∑
t∈[T]

(
x>i wt + ξt(i)

)
≥ γ∗ −O

(√
log(n)

T

)

Regarding the runtime, note that the algorithm performs O(ε−2 log(n)) iterations. With an appro-
priate implementation, an iteration updates wt (taking O(d) time), pt (taking O(n) time), and ξt
(taking O(n) time). The complete runtime is Õ(ε−2(n+ d)).

To rework the bias term b into this algorithm, only a couple of lines need to be changed, where
ξt is involved. The PST step is changed to

(ξt, bt)← argmax
ξ∈Ξν ,b∈[−1,1]

p>t (ξ + b · y)

and the dual update is changed to

ṽt(i)← xi(jt)‖wt‖2/wt(jt) + ξt(i) + yibt

The algorithm returns the average bias, b̄ =
∑
t∈[T] bt/T , and the analysis can be modified with a

few minor technical changes to produce the same runtime.

5.4 Performance Comparison

With the runtime analysis in hand, SVM-SIMBA can be compared to previous methods for training
SVMs, by both theoretical and practical methods.

17

To do the theoretical comparison, it is noted that the goal of learning is to find a predictor that
minimizes the generalization error Rerr(w) = Prob {y 〈w,x〉 ≤ 0}, with x, y distributed according
to a source distribution. The goal of the analysis is to find the runtime to find a predictor w with
generalization error Rerr(w) ≤ R∗ + δ, where

R∗ = Rhinge(w∗) = E
[
(1− y 〈w∗,x〉)+

]
is the expected hinge loss for a predictor w∗ with ‖w∗‖ ≤ B, given some B.

From [9], with high probability over a sample of size n, for all predictors w,

Rerr(w) ≤ R̂hinge(w) +O

‖w‖2
n

+

√
‖w‖2R̂hinge(w)

n


An online perceptron algorithm can find w : Rerr(w) ≤ R∗ + δ in time

O

(
B2

δ
d · R

∗ + δ

δ

)
Manipulating the runtime for SVM-SIMBA gives us the following statement.

Corollary 5.3. For any B ≥ 1 and δ > 0, with high probability over a training set of size n =
Õ(B2/δ·(δ+R∗)/δ), SVM-SIMBA outputs w with Rerr(w) ≤ R∗+δ, where R∗ = inf‖w∗‖≤B Rhinge(w

∗),
in time

Õ

((
B2d+

B4

δ
· δ + R∗

δ

)
·
(
δ + R∗

δ

)2
)

When comparing this to the online runtime, the learning regime is a situation in which R∗ is
small and δ = Ω(R∗), so that R∗+δ

δ = O(1). It is also assumed that in using a norm-regularized

approach like SVM, d� B2, so that d� B2
(

R∗+δ
δ

)2

.

After massaging this expression, it is shown that the runtime of SVM-SIMBA is smaller, by a
factor of (R∗ + δ) ≤ 1, than the runtime of the online approach, or more generally, any approach
which considers entire sample vectors. This is a significant improvement when the error rate is small,
or (R∗ + δ) = O(1/ log(B2/δ)).

In addition to the theoretical result, SVM-SIMBA was implemented and tested against the
competition. SVM-SIMBA and the Pegasos [8] algorithm (based on stochastic gradient descent)
were both run on two datasets, then evaluated based on test error relative to the number of feature
accesses. After tuning both algorithms’ parameters to minimize test error, the plots indicate that
SVM-SIMBA performed as well or better as Pegasos; SVM-SIMBA can obtain the same optimal
test error as Pegasos with 100 times fewer feature accesses.

Therefore, SVM-SIMBA represents a significant improvement over the methods that preceded
it, as shown by the runtime analysis and by practical results. This is accomplished by building on
the sublinear primal-dual method explained earlier as well as the PST method.

6 Conclusion

In this survey, we have presented and analyzed the performance of several sublinear algorithms,
given by Hazan et al., for optimization of constrained convex programs. The approach running
through this survey was first discussed for the perceptron, then used for a more general primal-dual
algorithm, which was applied to solving SDPs and training SVMs.

Although most of the results discussed here are specific to machine learning, there are some
important takeaways for other problems as well. The generic primal-dual algorithm gives a potential

18

approach for any optimization problem that can be formalized as a max-min game, and it is worth
trying to reduce other problems to this form.

This method also shows the power of multiplicative weights. By relaxing the problem to minimize
over a probability distribution instead of the best index, we can efficiently compute a distribution
that converges to putting almost all weight on the optimal index, which can be faster than computing
the optimal index directly. The results discussed here give bounds even when the expert outcomes
are not in [−1,+1], as long as the outcomes have constant variance.

Finally, for general sublinear algorithms, the idea of defining an appropriate random variable
whose expectation is the value we want to approximate gives a way to perform faster than runtime
bounds that seem optimal, as long as the approximations are managed correctly.

References

[1] Clarkson, Kenneth L., Elad Hazan, and David P. Woodruff. “Sublinear optimization for machine
learning.” Journal of the ACM (JACM) 59.5 (2012): 23.

[2] Hazan, Elad. ”Sparse approximate solutions to semidefinite programs.” LATIN 2008: Theoretical
Informatics. Springer Berlin Heidelberg, 2008. 306-316.

[3] Hazan, Elad. “The Convex Optimization Approach to Regret Minimization.” Optimization for
machine learning (2012): 287-303.

[4] Hazan, Elad, Tomer Koren, and Nati Srebro. “Beating SGD: Learning SVMs in sublinear time.”
Advances in Neural Information Processing Systems. 2011.

[5] Garber, Dan, and Elad Hazan. “Approximating semidefinite programs in sublinear time.” Ad-
vances in Neural Information Processing Systems. 2011.

[6] Garber, Dan, and Elad Hazan. ”Almost Optimal Sublinear Time Algorithm for Semidefinite
Programming.” arXiv preprint arXiv:1208.5211 (2012).

[7] Plotkin, Serge A., David B. Shmoys, and Éva Tardos. “Fast approximation algorithms for frac-
tional packing and covering problems.” Mathematics of Operations Research 20.2 (1995): 257-
301.

[8] Shalev-Shwartz, Shai, Yoram Singer, Nathan Srebro, and Andrew Cotter. “Pegasos: Primal
estimated sub-gradient solver for SVM.” Mathematical programming 127.1 (2011): 3-30.

[9] Srebro, Nathan, Karthik Sridharan, and Ambuj Tewari. “Smoothness, low noise and fast rates.”
Advances in Neural Information Processing Systems. 2010.

19

	Introduction
	Preliminaries and the Perceptron
	The Linear Classification Problem
	Algorithm: Sublinear Perceptron
	Technical Lemmas
	Main Theorem

	Generic Primal-Dual Algorithm
	Approximating Semidefinite Programs
	Problem
	Algorithm: Sublinear SDP
	Analysis

	Training Support Vector Machines (SVMs)
	Problem
	Algorithm: SVM-SIMBA
	Analysis
	Performance Comparison

	Conclusion

