
Exploring Boosted Recurrent Neural Nets For Rubik’s Cube Solving
Alex Irpan

UC Berkeley, Computer Science

Objectives

We explore integrating AdaBoost with neural net
training. AdaBoost focuses training on difficult
examples, which could train faster than uniform
weighting. It also gives a natural ensemble for fur-
ther boosting performance. We examine whether
AdaBoost achieves these results, using the prob-
lem domain of solving a Rubik’s Cube.

Background

Exhaustive search has shown every cube is solvable in
at most 26 turns. The best search algorithm is Ko-
ciemba’s Two Phase Algorithm, which uses iteratively
deepened A* search guided by domain knowledge [3].

Problem Setup

Model the Rubik’s Cube as an MDP, and treat finding
an solution as a sequence to sequence problem. An
episode is K random moves, and we want the net to
output the inverse of those moves. Changing K tunes
difficulty. Input is a one-hot encoding of sticker colors.
54 stickers and 6 colors gives 324 inputs.

Figure 1: Sample One-Hot Encoding of Cube State

Difficulties

The Rubik’s Cube domain has some interesting
properites.
• We have access to arbitrary amounts of data, and
it is easy to tune difficulty.

• However, episode labels are not 100% accurate. A
given cube has many possible solutions.

In the filtering setting, algorithms assume access to
a sampling oracle. We combine aspects of filtering
boosters and AdaBoost to get a custom boosting al-
gorithm that fits our use case.

Algorithm

We modify AdaBoost.M2 to sample new data every
timestep. Weak learners must output a confidence
vector over classes. f : (X, Y)→ [0, 1].
AdaBoost.M2 turns (xi, yi) into mislabelings
{((xi, yi), y)} for every wrong y. AdaBoost then
expects weak learner f to discriminate yi from y.
ploss(f, (xi, yi), y) = (1/2)(1− f (xi, yi)− f (xi, y))
For any distribution D over mislabelings, require an
edge over random guessing. (ED[ploss(f, ·, ·)] < 1

2)
Algorithm 1 Refreshed AdaBoost
Input: Dataset size n, oracle Sample(), p ∈ [0, 1]
1: Init {(xi, yi)} with n calls to Sample()
2: For i = 1, . . . , n, y ∈ Y \ {yi}, D1(i, y) = 1

|Y |−1
3: for t = 1 to T do
4: Train weak learner ft with distribution Dt(i, y)
5: εt← 1

n

∑
(i,y)Dt(i, y) ploss(ft, (xi, yi), y)

6: αt← log 1−εt
εt

7: Ft← 1
Zt

∑t
s=1αsfs, where Zt is a normalization

constant
8: for i = 1 to n do
9: Dt+1(i, y) ∝ Dt(i, y)eαt(1+ploss(ft,(xi,yi),y))

Normalize to make ∑
(i,y)Dt+1(i, y) = n

10: for i = 1 to n do
11: Keep sample (xi, yi) with probability p.
12: m← num samples lost, W ← weight lost
13: Call Sample() m times to get new (xj, yj)
14: Dt+1(j, y) ∝ e

∑t
s=1 αs ploss(Ft,(xj,yj),y)

15: Normalize to make ∑
(j,y)Dt+1(j, y) = W

return FT

Convergence Theorem

E[0/1 loss of FT] ≤ (|Y | − 1)
T∏
t=1

2
√
εt(1− εt)

Prove by reduction to two class AdaBoost [2]. Still
holds in expectation because the replaced data is sam-
pled from the same distribution.

Neural Net Training And Boosting

The weak learner is a neural net. We train a single
neural net over all t, multiplying gradients by sample
weight. Save snapshot of net for each t. For efficiency,
we only keep the models with largest αt.

Architecture Choice

Initial experiments showed LSTMs outperforming
RNNs and fully connected nets, even when all had the
same number of parameters. Classification accuracy
directly led to improved solving ability.

Figure 2: Classification Acc. and Solve % of Varying Architectures

The final architecture uses an LSTM of 100 hidden
units. Used n = 50000 and episode length K = 9.

Results

Net trained with AdaBoost guidance did worse than
baseline, and took longer to train.

Method Accuracy Run Time
Baseline 72.26% 237 min
Boosted, p = 0.8 67.56% 366 min
Boosted, p = 0 67.91% 439 min

Table 1: Experiment Results

Baseline also has better solve percentages across the
board. Some generalization, but solve rate drops
quickly.

Figure 3: Solve Percentages of Best Model From Each Method

Analysis

Intuitively, AdaBoost should work better when

• Weak learners are cheap to train and evaluate.
• Weak learners propose different outputs when
given the same input

Neural nets are not cheap to train, and working with
the same neural net means the net is regularized
against changing too much each iteration. Manual
inspection showed neural nets tended to agree on best
label.
Theoretically, approach will work with enough iter-
ations, but it is too computationally expensive and
there are not enough gains.
Current approach does not deal with fuzziness in
episode labels well. Further work needs to address
that multiple moves are valid.

Extensions

• Use reinforcement learning to optimize solve
percentage. (RL better suited to discrete reward.)

• Curriculum learning - slowly increase K as net
acheieves performance.

• Adjust loss and labels if neural net predicts a valid
solution that differs from ours.

References

[1] Bradley, Joseph K. "FilterBoost: Regression and
Classification on Large Datasets." 2007.

[2] Freund, Yoav, and Robert E. Schapire. "A
desicion-theoretic generalization of on-line
learning and an application to boosting." 1995.

[3] Kociemba, Herbert. "Two-Phase Algorithm
Details." 2014. Web. 27 Apr. 2016.

More Information

• Code: github.com/alexirpan/rubik_research
• Email: alexirpan@berkeley.edu

http://github.com/alexirpan/rubik_research
mailto:alexirpan@berkeley.edu

