
Hiding Input Size in Secure Computation - Presentation Notes

Alex Irpan

June 7, 2016

1 Introduction

Many secure computation protocols convert the desired function f(x, y) to a circuit, then do oper-
ations using that circuit. Doing so implicitly forces each party to reveal their input sizes. In some
domains, this leaks nothing, because input size is fixed or unimportant. For example, in voting
protocols, a vote is either 0 or 1, so everyone’s input is known to be one bit long. In other cases,
we may have a prior upper bound on input length. For Yao’s millionaire problem, we can safely
assume no one has more than 264 dollars, so the party that constructs the circuit can assume each
input is 64 bits.

However, in problems where there is no public upper bound on input size, sharing input size
may leak information. For example, learning the length of a query to a database could leak what
that party wants to learn. This motivates protocols designed to hide the input length.

These notes primarily details the results by Lindell, Nissim, Orlandi 2013, which both gives
a definition of security and proves when input size can be hidden and when it cannot [1]. Their
results are all specific to semi-honest adversaries. Further work by Chase, Ostrovsky, Visconti 2015
extends this work to malicious adversaries, and also introduces the idea of “executable proofs” [2].
We leave this for another time.

2 Definitions

Previous definitions of security did not explicitly consider input size. However, when input size is
either hidden or revealed, we need to modify several security definitions. For simplicity, we only
consider the two party case.

Again, we base security on indistinguishability from the ideal model. The general form of the
ideal model is

• Parties P1, P2 send inputs x, y to the third party

• The third party computes f(x, y).

• The third party sends length metadata to the appropriate parties.

• The third party sends f(x, y) to the appropriate parties.

The length metadata is given as 1|x| or 1|y|. This allows simulators to run in polynomial time
on the length of the other party’s input in the semi-honest setting.

1

Occasionally, learning the size of f(x, y) leaks something about the input lengths. For example,
let f(x, y) = g(x||y) where g is a one-way permutation. If a party learns |f(x, y)| without learning
f(x, y), that party can compute both parties input length. Thus, we also need to consider whether
the third party lets a party receives 1|f(x,y)|

Note this security definition can be seen as an extension of the standard security definition where
input lengths are revealed. When both input lengths are revealed, the third party broadcasts all
length metadata.

Finally, although we will only construct protocols for semi-honest adversaries, we discuss a
defintion for malicious adversaries. A malicious party may choose their input length based on the
honest party’s input length. For example, if P1 has |x| = k, P2 may pretend to have input length
2k. If P2’s input size is hidden, the runtime is exponential in the size of revealed inputs. This
motivates the following definition.

Definition 1 Security is defined as follows.

• In honest execution, the runtime is polynomial in input length, output length, and κ.

• when a party is malicious, the runtime is polynomial in input length, κ, and the run time
of the corrupted party.

This lets us define polytime simulators that use only public information for both the semi-honest
and malicious case.

3 Class 1 Results

In class 1 computation, exactly one party reveals input size. We assume P1 reveals input size |x|
and P2 hides it. The variations are as follows.

• Class 1.a: both parties get f(x, y).

• Class 1.b: only P1 gets f(x, y).

• Class 1.c: P1 gets f(x, y), P2 gets 1|f(x,y)|

• Class 1.d: only P2 gets f(x, y)

• Class 1.e: P1 gets 1|f(x,y)|, P2 gets f(x, y).

We show that Class 1.a,1.c,1.e are always achievable, and Class 1.b and 1.d are not always
achievable.

The construction will require Fully-Homomorphic Encryption.

Definition 2 Consider a tuple (Gen,Enc,Dec,Eval) of PPT algorithms defined as follows.

• (pk, sk)← Gen(1k) is a key generator

• c← Encpk(m) encrypts m with pk.

• m′ ← Decsk(c) outputs a message or ⊥.

2

• C′ ← Evalpk(C) gives a circuit that can be evaluated on ciphertexts.

This tuple is a FHE with circuit privacy if

• (Gen,Enc,Dec) is a CPA-secure public-key encryption scheme

• Correctness: for any polysize circuit C and input m,

Pr[C(m) 6= Decsk(C′(Encpk(m)))]

is negligible, where the probability is over all random coins used in Gen,Enc,Dec,Eval.

• Circuit Privacy: The ciphertext outputted by Eval is statistically indistinguishable from the
encrypted plaintext circuit output

{C′(c)}
s
≈ {Encpk(C(m))}

We assume that ciphertexts from FHE reveal plaintext input lengths.

3.1 Class 1.a/1.c/1.e Construction

First, we will construct a protocol for class 1.c. Both Class 1.a and Class 1.e can be reduced to
this case.

The intuition is simple - we will have P2 do all the computation, using FHE to make sure P2

never sends their input to P1, not even in an encrypted or encoded form.

• P1 samples (pk, sk)← Gen(1k), compute cx ← Enc(pk, x), and sends pk, cx to P2. Note that
Enc(pk, x) leaks |x|, but in this class P2 learns |x| anyways.

• P2 uses pk to encrypt cy ← Enc(pk, y), gets f ′ ← Evalpk(f), runs f ′(cx, cy) to get m′, and
sends m′ to P1. This leaks |f(x, y)| to P2, but P2 is allowed to learn this.

• P1 decrypts the received ciphertext to get f(x, y).

There is one subtlety here. P2 needs to construct the circuit for f to pass to FHE. To construct
the correct number of output wires, P1 needs to know |f(x, y)| before evaluation.

To explain why this is necessary for security, consider the set union problem. By this point in
the protocol, P2 knows |x| and y. With this, P2 can compute an upper bound on output length. In
this case, the upper bound is |x|+ |y|. P2 could construct a circuit with |x|+ |y| outputs, padding
the true output to that length, but by sending this circuit P2 reveals the upper bound |x|+ |y| to
P1. P1 can then compute |y|.

Thus, even computing an upper bound may reveal extra information. To be fully secure, we
need to run computation in two stages. First, we run a size preamble. This is a computation just
for computing |f(x, y)|. Using that length, we then compute f(x, y).

• P1 samples (pk, sk)← Gen(1k), compute cx ← Enc(pk, x), and sends pk, cx to P2.

• P2 constructs Csize,y, defined as Csize,y(x) = |f(x, y)|. P2 gets C′size ← Eval pk(Csize,y), com-
putes C′size(cx), and sends the encrypted length c`.

3

• P1 decrypts c` and sends back `.

• P2 constructs Cf,y such that Cf,y(x) = f(x, y) and Cf,y has ` output wires. P2 can now
compute as before on cx to get cf , sending cf back.

• P1 decrypts cf to get the output.

The simulator constructions are fairly straightforward, and will be skipped. The security comes
from the CPA encryption scheme and the security we assume FHE supplies.

Briefly, we explain how this can be modified for other cases. If both parties should learn output
(class 1.a), P1 can send f(x, y) at the end of a Class 1.c protocol. If P2 should learn f(x, y) and P1

should learn the length (class 1.e), have P2 mask the output by securely computing f(x, y)⊕G(r)
for some PRG G and some r sampled by P2, and compute f(x, y)⊕G(r) in a Class 1.a setting.

4 Impossibility for Class 1.b

Recall in Class 1.b that P2 learns the other party’s input size, but P1 learns the output f(x, y),
and P2 does not learn output length.

If there is a public upper bound on output length, we could pad f(x, y) to that upper bound,
then compute the padded f with a Class 1.c protocol. The impossibility construction will therefore
require a function with unbounded output length. We use oblivious transfer. Here, P1 supplies bit
b and P2 supplies yb, where both y0, y1 are of arbitrary length.

Proof Ideas: First upper bound transcript length, then show a secure protocol would let us
compress random strings, a contradiction.

Define T (κ, x, Y) as the random variable for bits transmitted when running OT on x, (y0, y1),
where randomness is over the random tapes.

Since the protocol is polytime, T (κ, 0, (0, 0)) < κc for some c, where b is some bit. Let y1 be a
random string of length m = Ω(κ2c).

We know T (κ, 0, (0, 0)) < κc. If

Pr[T (κ, 0, (0, y′1)) ≥ κc]

is non-negligible, P1 could distinguish P2’s input by checking transcript length.
This gives T (κ, 0, (0, y′1)) ≤ κc almost always. By a similar argument, T (κ, 1, (0, y′1)) ≤ κc, or

else P2 could check transcript length to attack P1.
Thus we can compress a random string from κ2c bits to Ω(κc) bits, a contradiction.

5 Class 2 Results

In Class 2, all input sizes are hidden.

• Class 2.a: both parties learn f(x, y)

• Class 2.b: only P1 learns f(x, y)

• Class 2.c: only P1 learns f(x, y), P2 learns |f(x, y)|

Note Class 2.b ⊂ Class 2.c ⊂ Class 2.a

4

5.1 General Impossibility

Every one of these cases cannot be computed in general. The proof is based on the communication
complexity of the function. In the typical case, the communication complexity is defined assuming
|X| = |y| = n. For our use case, we use a more general definition.

Definition 3 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be some function. Function f has randomized
communication complexity g(n) if for any x, y, Alice and Bob must exchange g(n) bits to compute
f(x, y) with negligible error, where n = min(|x|, |y|). (Only one party needs to learn f(x, y), and
the protocol can be insecure.)

Theorem 1 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1} be a function. If f has randomized communication
complexity Ω(nε) for some constant ε > 0, f cannot be securely computed with Class 2 hiding.

Intuition: The communication complexity places a lower bound on the length of the transcript.
Since the comm. complexity is Ω(nε), the lower bound is dependent on input length. However,
the input lengths are never revealed, and the output is a single bit. We show there is not enough
information to have secure protocols with sufficiently long transcripts.

Proof: Assume for contradiction that π is a protocol that securely computes f in class 2.a.
First, we show the communication complexity is upper bounded by p(κ) for some polynomial

p(·).
Let b ∈ {0, 1} be an output bit. Define

Ib = {(x, y) : f(x, y) = b}

By security definitions, there exist simulators S1, S2 such that S1 generates P1’s view from x, f(x, y)
and S2 generates P2’s view from y, f(x, y). For every pair (x, y) ∈ Ib, the simulators must simulate
from only (x, b) and (y, b) respectively.

Let x be the shortest string such that for some y, (x, y) ∈ Ib. The runtime of S1 is bounded by
some polynomial p′(·).

Let pb(κ) = p′(|(x, b)|+ κ). This upper bounds the transcript for a specific (x, y); we now show
this upper bounds transcript length for every (x, y) ∈ Ib. Suppose (x, y) ∈ Ib produces a longer
transcript with non-negligible probability. Then we have a distinguisher between different (x, y)
pairs that produce the same bit b, contradicting security.

Thus, some polynomial p(·) upper bounds communication. Let c be a constant such that p(κ) <
κc for sufficiently large κ. Define protocol π′ as follows: given input (x, y), let n = min(|x|, |y|).
Run π with security parameter κ = nε/(2c). The output is correct, but the transcript length of π′

is at most p(κ) < κc = nε/2, contradicting the Ω(nε) lower bound. �
Examples of Failing Functions:
Previous work on communication complexity gives several examples of functions that require

revealing at least one party’s input length [3].

• The inner product function defined as

IP (x, y) =

min(|x|,|y|)∑
i=1

xiyi mod 2

has communication complexity Ω(n)

5

• The set disjointness function defined as

DISJ(X,Y) =

{
1 if X ∩ Y = ∅
0 otherwise

has communication complexity Ω(n).

Both of these functionalities cannot be securely computed while hiding input size.

5.2 Computable Class 2 Functions

The proof earlier shows that when communication complexity grows with input length, we must
reveal input length to compute it. This motivates the study of size-independent protocols.

Definition 4 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗. A protocol π is size-independent if it satisfies the
following.

• (Correctness) Pr[π(x, y) 6= f(x, y)] is negligible.

• (Computational Efficiency) π can be implemented by two PPT interactive Turing Machines
π1, π2.

• (Communication Efficiency) There exists a polynomial p(·) such that when |x| = poly(κ) and
|y| = poly(κ), for sufficiently large κ there are at most p(κ) rounds and the message per round
has length at most p(κ).

Intuitively, the communication can be bounded by just the security parameter. This is securely
computable, assuuming an even stronger variant of FHE called thresholded FHE.

Definition 5 Thresholded fully homomorphic encryption is a FHE scheme that replaces Gen,Dec
with ThrGen,ThrDec.

• ThrGen outputs (pk, (sk1, sk2)), such that sk1 ⊕ sk2 = sk. These shares are then divided
between the two parties. The first receives (pk, sk1), the second receives (pk, sk2).

• ThrDec takes (c1, sk1), (c2, sk2), and outputs Dec(c1, sk1 ⊕ sk2) if c1 = c2

Definition Intuition: Thresholded FHE lets us avoid any one party learning the secret key.
Both parties must cooperate to decrypt a ciphertext, so the honest party can choose what cipher
texts a corrupted party is allowed to decrypt.

Theorem 2 Assuming thresholded FHE, every f with a size independent protocol π can be com-
puted in Class 2.c (where P1 learns f(x, y) and P2 learns 1|f(x,y)|.)

Proof Intuition: From π, construct a collection of circuits. Let

CiP1,κ,x,r, C
i
P2,κ,y,s

be circuits that take the previous i−1 messages in the transcript so far and outputs the ith message
for P1, P2 respectively. Parameters r, s are hard-coded random tapes for P1 and P2.

6

Initially, P1, P2 run a secure protocol for ThrGen to receive shares of the secret key. P1 and
P2 then run an encrypted version of π. For message i, the parties construct CiP1,κ,x,r

, CiP2,κ,y,s
.

They transform them with Eval from FHE, evaluating them on the encrypted transcript so far,
and sending the next encrypted message to each other. By Communication Efficiency, we have an
upper bound of (i− 1)p(κ) inputs for circuit i, which lets us do the construction without revealing
input length.

Finally, construct circuits for the output. Again, this is a two-step process. The first step
computes the output length given the transcript. The second step computes the output. Both
circuits are then run through Eval, evaluated on the encrypted transcript, and run a secure protocol
computing ThrDec for the final outputs.

6 Conclusion

We give a definition of security that explicitly handles input size, and prove various feasibility results
in the semi-honest setting. We show that assuming FHE, all functions are securly computable when
one input size is hidden and the output size is revealed. Without revealed output size, there are
functions that require revealing information on both parties’ input sizes, and it is impossible to
securely compute all functions while hiding both input sizes.

7 References

[1] Lindell, Yehuda, Kobbi Nissim, and Claudio Orlandi. ”Hiding the input-size in secure two-party
computation.” Advances in Cryptology-ASIACRYPT 2013. Springer Berlin Heidelberg, 2013.
421-440.

[2] Chase, Melissa, Rafail Ostrovsky, and Ivan Visconti. ”Executable Proofs, Input-Size Hiding
Secure Computation and a New Ideal World.” Advances in Cryptology-EUROCRYPT 2015.
Springer Berlin Heidelberg, 2015. 532-560.

[3] Kushilevitz, Eyal. ”Communication complexity.” Advances in Computers 44 (1997): 331-360.

7

