Motivation

* New trend of using deep neural nets to
represent policies in MDPs

* Deep reinforcement learning success, but
small discrete action space.

* Want to apply similar ideas to continuous
problems.

Discretization

. Bucket range into discrete options
. Problem: exponentially large
. Solution: add conditional independence
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Independence Assumption

. Similar to directed graphical models.

. Represent joint action space compactly

. For Q-learning, need easily computable
max, suggests additive basis functions.

. Best case, NAD outputs -> ND ouputs
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Modifications to Algorithm
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If Q(s,a) =Y Qi(s,a(i))
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Then max (s, a) = Z max Q;(s, a(i))

VeQa(s,a) = Z Va@i(s,ali))
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Extendable to conditionally independent
actions, with analogous max and gradient
computation. See [1]

Experimental Results
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Further Work

. Policy gradient methods
. Stochastic policy, actions form joint
probability distribution
. Represent with directed model
For trajectory T = (s0,ap, 81,41, )

{(r) = E[R(7)]

Vol(r) = E |R(7) Y Vglogm(a|s;)
i

If m(a|s) = H mi(a(i)| parents(a(i)), s)

T
Then Vg log (als) = Z Vi log mi(a(i)| parents(a(i)), s)

State Also looking into wire fitting
methods
. Directly exploits
continuous nature
. Wires as guides,
interpolation to
A A, generalize.
. Factorization may also
apply to this method
A A *  See [2] for more details
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